Search results for "Motivic homotopy theory"

showing 2 items of 2 documents

Voisinages tubulaires épointés et homotopie stable à l'infini

2022

We initiate a study of punctured tubular neighborhoods and homotopy theory at infinity in motivic settings. We use the six functors formalism to give an intrinsic definition of the stable motivic homotopy type at infinity of an algebraic variety. Our main computational tools include cdh-descent for normal crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under-adic realization, the motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results hold for Steenbrink's limiting Hodge structures and Wildeshaus' boundary motives. Under the topological Betti realization, the stable motivic homotopy type at infinity of an algebraic variety recovers…

links of singularities[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Motivic homotopy theorypunctured tubular neighborhoods[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT]stable homotopy at infinityMathematics::Algebraic TopologyMathematics - Algebraic Geometrylinks of singularities.Mathematics::Algebraic Geometryquadratic invariantsMathematics::K-Theory and HomologyFOS: MathematicsAlgebraic Topology (math.AT)14F42 19E15 55P42 14F45 55P57Mathematics - Algebraic TopologyAlgebraic Geometry (math.AG)qua- dratic invariants
researchProduct

On some aspects of Borel-Moore homology in motivic homotopy : weight and Quillen’s G-theory

2016

The theme of this thesis is different aspects of Borel-Moore theory in the world of motives. Classically, over the field of complex numbers, Borel-Moore homology, also called “homology with compact support”, has some properties quite different from singular homology. In this thesis we study some generalizations and applications of this theory in triangulated categories of motives.The thesis is composed of two parts. In the first part we define Borel-Moore motivic homology in the triangulated categories of mixed motives defined by Cisinski and Déglise and study its various functorial properties, especially a functoriality similar to the refined Gysin morphism defined by Fulton. These results…

Quillen’s K-theory and G-theoryStructure de poidsMixed motives[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Motivic homotopy theoryHomologie de Borel-MooreThéorie de l’homotopie motiviqueMotifs de ChowChow motives[MATH.MATH-KT] Mathematics [math]/K-Theory and Homology [math.KT]G-théorieFormalisme des six foncteursWeight structureSix functors formalismMotifs mixtesRefined Gysin morphismBorel-Moore homologyMorphisme de Gysin raffinéK-théorie de Quillen
researchProduct